Matrix Addition and the Dunkl Transform at High Temperature
نویسندگان
چکیده
We develop a framework for establishing the Law of Large Numbers eigenvalues in random matrix ensembles as size goes to infinity simultaneously with beta (inverse temperature) parameter going zero. Our approach is based on analysis (symmetric) Dunkl transform this regime. As an application we obtain LLN sums matrices inverse temperature 0. This results one-parameter family binary operations which interpolates between classical and free convolutions probability measures. also introduce study deformed cumulants, linearize operation.
منابع مشابه
An Uncertainty Principle for the Dunkl Transform
The Dunkl transform is an integral transform on R" which generalises the classical Fourier transform. On suitable function spaces, it establishes a natural correspondence between the action of multiplication operators on one hand and so-called Dunkl operators on the other. These are differential-difference operators, generalising the usual partial derivatives, which are associated with a finite...
متن کاملGeneralization of Titchmarsh's Theorem for the Dunkl Transform
Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.
متن کاملPaley–wiener Theorems for the Dunkl Transform
We conjecture a geometrical form of the Paley–Wiener theorem for the Dunkl transform and prove three instances thereof, by using a reduction to the one-dimensional even case, shift operators, and a limit transition from Opdam’s results for the graded Hecke algebra, respectively. These Paley– Wiener theorems are used to extend Dunkl’s intertwining operator to arbitrary smooth functions. Furtherm...
متن کاملRiesz Transform and Riesz Potentials for Dunkl Transform
Analogous of Riesz potentials and Riesz transforms are defined and studied for the Dunkl transform associated with a family of weighted functions that are invariant under a reflection group. The L boundedness of these operators is established in certain cases.
متن کاملGeneralization of Titchmarsh's Theorem for the Dunkl transform
Using a generalized spherical mean operator, we obtain the generalizationof Titchmarsh's theorem for the Dunkl transform for functions satisfyingthe Lipschitz condition in L2(Rd;wk), where wk is a weight function invariantunder the action of an associated reection groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2022
ISSN: ['0010-3616', '1432-0916']
DOI: https://doi.org/10.1007/s00220-022-04411-z